DCR and Nasolacrimal System (Cadaver)
Main Text
Table of Contents
Nasolacrimal duct obstruction (NDO) is the most common disorder of the lacrimal system that affects patients of every age and results in excessive tearing (epiphora) and if untreated, painful infection (dacryocystitis). When NDO symptoms progress and can no longer be managed with conservative measures, endoscopic dacryocystorhinostomy (DCR) is indicated. In this case, DCR exploration of the nasolacrimal anatomy is performed on a cadaver. The typical presentation of NDO is epiphora but the presence of painful swelling of the medial canthus and mucoid or purulent discharge may indicate the presence of dacryocystitis. The approach presented here is similar to the technique described by Tsirbas and Wormald in 2003 and involves the creation of a mucosal flap and subsequent use of the DCR drill to expose the nasolacrimal duct anatomy. Stenting and subsequent marsupialization of the flap is not shown in the cadaveric dissection. Postoperatively, patients are typically advised to use nasal irrigation twice daily with saline for six weeks and complete a 1-week course of PO antibiotics and 5-day course of antimicrobial eye drops.
Nasolacrimal duct obstruction (NDO) is the most common disorder of the lacrimal system that affects patients of every age and results in excessive tearing (epiphora) and if untreated, can lead to painful swelling of the medial canthus and mucoid or purulent discharge infection (dacryocystitis).1 NDO may be due to an idiopathic inflammatory stenosis called primary acquired nasolacrimal duct obstruction (PANDO), which can result in either partial stenosis or complete obliteration of the duct lumen and occurs primarily in middle age and elderly women.1 NDO may also occur secondary to a variety of infectious, inflammatory, neoplastic, traumatic, and mechanical insults. In these cases, the disease is referred to as secondary acquired nasolacrimal duct obstruction (SANDO).2 When a patient’s chief complaint and initial history are concerning for NDO, follow-up questioning focused on prior ocular, systemic, or traumatic disease should be done to discern between PANDO and SANDO. An appropriate physical exam includes an external exam of the eyelids, slit lamp exam, medial canthus exam, and a thorough endoscopic nasal exam to rule out inflammatory, structural, or neoplastic abnormalities in the nasal passage. Initial therapy for SANDO will depend on the specific etiology with antibiotics for infections, corticosteroids or immunomodulatory therapy for inflammatory causes, and chemotherapy/radiation for neoplasms. Most patients will require surgery.
Dacryocystorhinostomy (DCR) surgery is the primary surgery for NDO and involves surgically bypassing the nasolacrimal duct.3 A passage is created from the lacrimal sac to the lateral nasal wall and in some cases, silicon stents are temporarily placed to maintain patency and allow tear drainage.
Herein, Dr. Ellison leads the residents at Duke University in performing a DCR while identifying the relevant nasolacrimal anatomy. Use of picture-in-picture offers our viewers insight into how the lower canaliculus probe is managed with endoscopic assistance.
A 55-year-old female presents to the otolaryngology clinic with a chief complaint of right eye tearing and conjunctival discharge for several weeks that progressively worsened over the past week. An external exam of the eye, eyelids and medial canthus reveal a distended, slightly tender lacrimal sac with conjunctival injection. Nasal endoscopy did not reveal any abnormalities of the nasal mucosa. Diagnostic probing and syringing of the lacrimal pathway demonstrated reflux through the opposite punctum, suggestive of stenosis of the common canaliculus or the lower lacrimal pathway.3 Subsequent CT scan of the lacrimal sac, orbit, and paranasal sinuses confirmed NDO of the lower lacrimal pathway. Surgery was scheduled.
DCR surgery is indicated for patients with NDO who have epiphora. History and physical examination are typically sufficient to indicate a patient for surgery after initial conservative management is attempted. Additional functional radiologic studies such as dacryocystography, which involves localization of a complete obstruction with contrast, or dacryoscintigraphy, which involves localization of an incomplete obstruction with radionuclide tracers, are both less frequently used due to the sensitivity and prevalence of CT.3
The patient is positioned supine with the head slightly extended and the head of the bed raised 20–30°. The procedure is generally performed under general anesthesia (GA). Oxymetazoline-soaked pledgets are placed in the middle meatus and along the lateral nasal wall to promote decongestion. The lateral nasal wall, axilla of the middle turbinate, and uncinate are infiltrated with 1% lidocaine with 1:100,000 epinephrine for hemostasis.4
A combination of 0° and 30° rigid endoscope can be used to localize the lacrimal sac. Key landmarks include: the axilla of the middle turbinate (the roof of the lacrimal sac is situated above the axilla and extends 1–2 mm below this landmark) and the uncinate process. The superior and inferior turbinates should be identified as well along with an evaluation of the nasal septum.
After ensuring adequate vasoconstriction of the mucosa, a horizontal incision is made above the insertion of the middle turbinate and anterior to the axilla. This incision is extended vertically down the frontal process of the maxilla and should be right above the bone. In this case, a sickle knife is used but intraoperatively a scalpel, beaver blade, or cautery may be used. The lower horizontal incision is made somewhere just above the inferior turbinate.
The mucosal flap is elevated using either a Freer or Cottle elevator to obtain good exposure of the junction of the nasolacrimal duct to the underlying maxilla (lacrimal crest of the maxilla).5
After elevating the mucosal flap, a Kerrison bone punch is used to remove bone from the inferior aspect of the frontal process of the maxilla up to the level of the axilla of the middle turbinate. This process is done carefully, ensuring only bone is taken to prevent tearing of the nasolacrimal duct. The bone at the level of the axilla of the middle turbinate is too thick to punch. At this point, a 20°, guarded DCR drill is used to remove bone up to 8 mm above the axilla of the middle turbinate to expose the nasolacrimal sac. The guard on the drill protects the mucosal flap and the middle turbinate. Again, this process is done carefully to ensure adequate bone skeletonization with minimal damage to the lacrimal sac itself.
Once adequate visualization of the nasolacrimal sac is felt to have been achieved, a probe is inserted into the lower canaliculus via the lacrimal duct to confirm the location of the common canaliculus which ultimately empties into the lateral wall of the lacrimal sac. If the probe tip can be visualized on nasal endoscopy, this suggests that sufficient bone over the common canalicular opening has been removed and an incision into the lacrimal sac can be made. The main goal is to create a large bony ostium that allows communication between the lacrimal sac and the nasal mucosa. Some studies support the use of silicon tubes to stent open the canaliculi and prevent scarring of the rhinostomy site.6 Randomized trials provided by Xie C et al. have shown that silicone intubation after endoscopic lacrimal surgery does not change the outcome.27
Following exposure of the bone and any necessary stenting, the mucosal flaps can be folded back towards the uncinate process to facilitate marsupialization.5
DCR for the treatment of NDO has been performed since the early 20th century with the original, external DCR technique first described by the Italian otolaryngologist, Addeo Toti.7 While external DCR was long considered the gold standard in NDO management, advances in endoscopic technology have afforded surgeons the ability to perform endoscopic DCR (endo-DCR), which has recently grown in popularity.8 While the advantages of external DCR include the ability to directly visualize the lacrimal sac and form and suture flaps between the lacrimal sac and nasal mucosa, the major disadvantage is the medial canthal scar and increased post-op morbidity from the skin incision.3 Endo-DCR does not involve an external incision or scar and allows the surgeon to treat concomitant endonasal pathology but makes the process of forming and suturing sac-nasal mucosal flaps more technically challenging.5,9 Despite key differences in technique, a 2017 Cochrane review revealed there is uncertainty in which method is most effective due to lack of well-designed randomized control trials.10 While the majority of DCR surgeries in the United States are still performed externally, an increasing number are completed endoscopically with reports of equal safety and effectiveness.11
Postoperative care has a major influence on successful DCR.12 Patients are typically advised to use nasal irrigation twice daily with saline for six weeks and complete a 1-week course of PO antibiotics and 5-day course of antimicrobial eye drops.4 The assessment of a successful DCR is based on symptom relief as well as the absence of any objective signs of NDO (epiphora, dacryocystitis).13 In fact, detailed patient satisfaction surveys (Lacrimal Symptom Questionnaire14 and NLDO symptom score15) that assess symptom relief and improvement in quality of life are considered validated indicators of surgical success.
The overall complication rate after DCRs is reported to be around 6%.16 The most frequently reported postoperative complications localize primarily to the nasolacrimal duct and include hemorrhage, silicone tubing prolapse, and persistent canalicular obstruction which may require revision DCR.16 Postoperative ophthalmologic complications are uncommon and range from temporary ophthalmoplegia to orbital fat herniation which may be managed conservatively to orbital and subcutaneous emphysema, conjunctival fistula formation, and retrobulbar hematoma, all of which require urgent ophthalmologic consultation.16
Red flag symptoms following DCR include fever, severe headache, neck stiffness, light sensitivity, and rhinorrhea, which may indicate rare but severe complications such as CSF leak or meningitis.17,18 If the presentation is concerning for a CSF leak, evaluation of rhinorrhea or otorrhea for beta-2 transferrin is necessary, and if positive, a high-resolution CT of the paranasal sinuses and temporal bone should be obtained to prepare for surgical management.19 If the presentation is concerning for meningitis, a prompt assessment of intracranial pressure is necessary. If the intracranial pressure is not elevated, a lumbar puncture is necessary and if it is consider a head CT prior to further management.20
While outcomes after endo-DCR are typically positive with success rates between 84–94%,16 success rates are highest in patients without a history of dacryocystitis, sinusitis or chronic inflammation.3 Given the technical challenge of endo-DCR when compared to external DCR, surgeon experience plays an important role in surgical success as well.21 With respect to differences in specific endo-DCR techniques, a 2020 systematic review by Vinciguerra et al found that there were no differences in outcomes between mechanical and powered approaches in endo-DCR and that mucosal flap preservation was not necessary to achieve a better outcome.22
When compared to primary procedures, revision procedures generally have lower success rates (76.5%).23 The formation of granulation tissue over the rhinostomy site is the most likely contributor to lower success rates in revision procedures,24,25 and evidence suggests that an antiproliferative agent such as mitomycin C can be applied postoperatively to improve outcomes in revision endo-DCR cases.15,26
Future prospective, randomized trials with larger sample sizes are necessary to evaluate the efficacy of endo-DCR vs external DCR as well as intraoperative antiproliferative agents on the rate of healing and surgical outcomes.
Check out the rest of the series below:
Citations
- Mills DM, Meyer DR. Acquired nasolacrimal duct obstruction. Otolaryngol Clin North Am. 2006;39(5):979-999, vii. doi:10.1016/j.otc.2006.07.002.
- Penttilä E, Smirnov G, Tuomilehto H, Kaarniranta K, Seppä J. Endoscopic dacryocystorhinostomy as treatment for lower lacrimal pathway obstructions in adults: Review article. Allergy Rhinol (Providence). 2015;6(1):e12-e19. doi:10.2500/ar.2015.6.0116.
- Endoscopic Dacryocystorhinostomy (DCR) | Iowa Head and Neck Protocols. Accessed January 24, 2021. Available from: https://medicine.uiowa.edu/iowaprotocols/endoscopic-dacryocystorhinostomy-dcr.
- Tsirbas A, Wormald PJ. Endonasal dacryocystorhinostomy with mucosal flaps. Am J Ophthalmol. 2003;135(1):76-83. doi:10.1016/s0002-9394(02)01830-5.
- Jo YJ, Kim KN, Lee YH, Kim JY, Lee SB. Sleeve technique to maintain a large mucosal ostium during endoscopic dacryocystorhinostomy. Ophthalmic Surg Lasers Imaging. 2010;41(6):656-659. doi:10.3928/15428877-20100929-03.
- Toti A. Nuovo metado conservatore di radicale delle suppurazioni croniche del sacco lacrimale (dacriocystorhinostomia). Cli Mod Pisa. 1904;10:385-387.
- Harish V, Benger RS. Origins of lacrimal surgery, and evolution of dacryocystorhinostomy to the present. Clin Exp Ophthalmol. 2014;42(3):284-287. doi:10.1111/ceo.12161.
- Amadi AJ. Endoscopic DCR vs External DCR: what’s best in the acute setting? J Ophthalmic Vis Res. 2017;12(3):251-253. doi:10.4103/jovr.jovr_133_17.
- Jawaheer L, MacEwen CJ, Anijeet D. Endonasal versus external dacryocystorhinostomy for nasolacrimal duct obstruction. Cochrane Database Syst Rev. 2017;2:CD007097. doi:10.1002/14651858.CD007097.pub3.
- Ullrich K, Malhotra R, Patel BC. Dacryocystorhinostomy. [Updated 2023 Aug 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557851/.
- Hong JE, Hatton MP, Leib ML, Fay AM. Endocanalicular laser dacryocystorhinostomy analysis of 118 consecutive surgeries. Ophthalmology. 2005;112(9):1629-1633. doi:10.1016/j.ophtha.2005.04.015.
- Olver JM. The success rates for endonasal dacryocystorhinostomy. Br J Ophthalmol. 2003;87(11):1431.
- Mistry N, Rockley TJ, Reynolds T, Hopkins C. Development and validation of a symptom questionnaire for recording outcomes in adult lacrimal surgery. Rhinology. 2011;49(5):538-545. doi:10.4193/Rhino11.042.
- Penttila E, Smirnov G, Seppa J, Tuomilehto H, Kokki H. Validation of a symptom-score questionnaire and long-term results of endoscopic dacryocystorhinostomy. Rhinology. 2014;52(1):84-89. doi:10.4193/Rhin.
- Leong SC, Macewen CJ, White PS. A systematic review of outcomes after dacryocystorhinostomy in adults. Am J Rhinol Allergy. 2010;24(1):81-90. doi:10.2500/ajra.2010.24.3393.
- Beiran I, Pikkel J, Gilboa M, Miller B. Meningitis as a complication of dacryocystorhinostomy. Br J Ophthalmol. 1994;78(5):417-418.
- Fayet B, Racy E, Assouline M. Cerebrospinal fluid leakage after endonasal dacryocystorhinostomy. J Fr Ophthalmol. 2007;30(2):129-134. doi:10.1016/s0181-5512(07)89561-1.
- Severson M, Strecker-McGraw MK. Cerebrospinal Fluid Leak. In: StatPearls. StatPearls Publishing; 2020. Accessed February 1, 2021. Available from: http://www.ncbi.nlm.nih.gov/books/NBK538157/.
- Hersi K, Gonzalez FJ, Kondamudi NP. Meningitis. In: StatPearls. StatPearls Publishing; 2020. Accessed February 1, 2021. Available from: http://www.ncbi.nlm.nih.gov/books/NBK459360/.
- Ali MJ, Psaltis AJ, Murphy J, Wormald PJ. Outcomes in primary powered endoscopic dacryocystorhinostomy: comparison between experienced versus less experienced surgeons. Am J Rhinol Allergy. 2014;28(6):514-516. https://doi.org/10.2500/ajra.2014.28.4096.
- Vinciguerra A, Nonis A, Resti AG, Barbieri D, Bussi M, Trimarchi M. Influence of surgical techniques on endoscopic dacryocystorhinostomy: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. Published online. November 24, 2020:194599820972677. doi:10.1177/0194599820972677.
- Tsirbas A, Davis G, Wormald PJ. Revision dacryocystorhinostomy: a comparison of endoscopic and external techniques. Am J Rhinol. 2005;19(3):322-325.
- Allen KM, Berlin AJ, Levine HL. Intranasal endoscopic analysis of dacrocystorhinostomy failure. Ophthalmic Plast Reconstr Surg. 1988;4(3):143-145. doi:10.1097/00002341-198804030-00004.
- Kominek P, Cervenka S, Pniak T, Zelenik K, Tomaskova H, Matousek P. Revision endonasal dacryocystorhinostomies: analysis of 44 procedures. Rhinology. 2011;49(3):375-380. doi:10.4193/Rhino10.293.
- Cheng S, Feng Y, Xu L, Li Y, Huang J. Efficacy of mitomycin C in endoscopic dacryocystorhinostomy: a systematic review and meta-analysis. PLoS One. 2013;8(5):e62737. doi:10.1371/journal.pone.0062737.
- Xie C, Zhang L, Liu Y, Ma H, Li S. Author correction: comparing the success rate of dacryocystorhinostomy with and without silicone intubation: a trial sequential analysis of randomized control trials. Sci Rep. 2018;8(1):17901. Published 2018 Dec 12. doi:10.1038/s41598-018-37134-0.
Cite this article
Roychowdhury P, Brown CS, Ellison MD. DCR and nasolacrimal system (cadaver). J Med Insight. 2024;2024(161.4). doi:10.24296/jomi/161.4.
Procedure Outline
Table of Contents
- Drill Area of Nasolacrimal Sac
- Release Flap
- Drill Area of Nasolacrimal Sac
Transcription
CHAPTER 1
Alright, so I’m going to just show some of the anatomy of the nasolacrimal system, and do a dacryocystorhinostomy to demonstrate that. The first step I guess is just to evaluate your anatomy. So middle turbinate here. I’m holding a sickle knife, and I’m operating on the right side of the patient, using a thirty-degree camera. So key landmarks are the axilla of the middle turbinate, the vertical attachment, the inferior turbinate, superior edge, here. The uncinate is also going to be used as a landmark for this. Sometimes it’s kind of flexible; in this case, it’s kind of rigid. You get the sense that it probably ends right around there. Other sort of virtual landmarks are where you imagine the lacrimal sac to be. And it actually begins up to a centimeter above the axilla. It can be quite high. And then of course, from there it comes down, siphoned to the nasolacrimal duct, and it will exit the inferior meatus. You saw how high it goes, and often you have to remove the anterior wall of the agger nasi in order to get to the lacrimal sac. The other thing when you do a real one is to evaluate your septum too. This one is really nice. And if the septum is over and you can say well I can technically get in there. Don’t hesitate to take the time to do a little septoplasty, get it out of the way.
CHAPTER 2
So I make my incision, and what I’m going to do, for this next step, is create a mucosal flap. So I’m going to start roughly a centimeter above the maxilla and come forward. And this can bleed in real life, so you want to inject ahead of time, best you can. We’re going to use a needle tip Bovie to do this. Then I'm going to make a vertical incision. You can use a scalpel for this or a beaver blade or again the cautery. In this case, I'm just going to drag the sickle knife, so it might not be the nicest incision here. Going the best I can right down to bone. And then lower horizontal incision is going to be somewhere on top of the inferior turbinate, and it’s going to bleed a little bit too. And I want to attach those. Alright. I’m just trying to stay right on bone. Now I’ll take my Freer.
CHAPTER 3
Do you always do the mucosal flap? Pretty much, yeah. Because then I’ll try to - kinda using PJ Wormald’s technique. And try to preserve that because you can use that it later to cover some of the exposed bone that you create. I find that it creates a lot of - I mean, we didn’t preserve the mucosal flaps, because it would just get destroyed. I also like... But I think it is a good idea because it does scar a lot. Even if I do - even if I do wind up removing some of it, I like to preserve it initially, because I can use it to protect the middle turbinate, even if I do end up taking a few quarters of it later. See a lot of really good exposure of the nasolacrimal duct to the bone. That's the kind of exposure you want to get. You can even make that incision more anterior. Right. I almost take it back to where I sort of - to the uncinate. Here, I think I’m right at the uncinate there. I need to release that down here. And this actually is a pretty avascular plane if you get into it right. Alright. Now unfortunately, the thickest bone around the nasolacrimal duct is right where you’re trying to get to it. The thinnest part is in the posterior part, which you can’t access surgically. Now I’m taking a Kerrison.
CHAPTER 4
My next step I’m going to expose the nasolacrimal duct - lacrimal sac. So I’m taking my Kerrison, and I’m just insinuating back here, trying to get behind the uncinate. Well, actually probably the bone is in front of the uncinate, really. And I’m taking this off. And I’m kind of cracking it, and letting go, pulling it. Do you drill or...? I’ll drill later, yeah. What drill do you use? I just use a DCR drill, 20-degree, guarded DCR drill. What I used - what I used in fellowship was the Sonopet, Uh huh, yeah. Fancy, expensive. I mean, it was because Alex was using it. He was doing the DCR. So, again, anyways... I'm crunching it, letting go a little bit. The reason I let go is because there’s a chance I can snag the nasolacrimal duct. I don’t want to tear that. I just want to get the bone. As you kind of get higher, you kind of lose the advantage of your Kerrison. You really can’t... Just cause of the angle, you can’t really get that much more. Now in theory, we’re probably looking at the sac of the duct there - the lower part of it. I can push from the outside, and there we go. You see it kind of move there. You ask yourself well, “Well could that be the orbit? The periorbita?” Well not really, look how far interior you are. I’m not pressing that deep, so…
My next step is to take my drill and drill away the part that I couldn't get to with the Kerrison. Twenty-degree angle on there. It’s got a guard on it. He’s drilling the area of the nasolacrimal - the lacriminal sac. You see it’s pretty high up there. You guys see how the DCR burr has a guarded tip? That’s the DCR burr right? Right, it's got a guard on the back here to guard my mucosal flap and middle turbinate. Again, this is the thickest part of your dissection - of bone dissection. The frontal process of the maxillary bone.
I’m releasing my flap, just a little bit more to get it out of the way.
This is very dense hard bone. Sort of skeletonizing the bone here, trying to thin it out. Minimize my drill on the sac mucosa or the mucosa itself. I’m just exposing more and more of the sac. Alright so a little more drilling, and I’ll just puncture through here. Alright. So, you can see we actually went a little bit too far. So this is - that’s not lacrimal sac, that’s actually skin, or the periosteum. So I actually went too deep there. No harm done, but that's when you can come back and just check if the lacrimal sac is moving in the area up there or not.
CHAPTER 5
Alright. Now from the outside, I try to put a probe into the lacrimal duct, the lower canaliculus. I’ll try to advance that here. I can see it moving. Again, nice confirmation that we’re in the right spot. And, lower canaliculus joins with the upper one to form a common canaliculus, and that’s what enters the sac. And I’m really not trying to torque this probe at all. It’s just sitting right there naturally. I’m getting confidence that I’m in a good location, and I can also... Also put my flap back. There’s a middle turbinate. I can see where the middle turbinate axilla is, which is right there. So I can probably actually go higher, but I think for the purposes here, I’ll just stop, but you can go higher. So I’m going to make a little incision in the sac. The anatomy is kind of set. Now from here on out, it’s just technical things to get the right instruments to make these incisions.
CHAPTER 6
The lacrimal sac is here. This is going to be more tough than you think it should be. Because it's often been infected. So that’s kind of a... So there’s nice movement. You can tell there's kinda several layers I had to go through to get to that. You can be mislead and think you’re in the sac but you’re really not. Just extending this down. Alright. So, and this flap, you can just lay back, and you can imagine that’s going to heal. Really that’s one of the advantages of the endonasal approach over the external approach. The external approach they don’t preserve this flap. Plus they’ve made a hole on the other side of the sac. They have very good results too, but that’s kind of the theoretical advantages of our technique. So you can kind of see how it does go higher. I probably would take a little bit more time and drill this away. Even before I made an incision, I could do that because I already knew from where the axilla of the middle turbinate is right here that I’m still a little bit low. This is probably good enough for most cases. There we go. So, you might have seen I had a little difficulty getting through there, and there's actually a little valve right here, and sometimes that valve cannot be cooperative to you. But this is really nice, so I didn't have to tear, of course it’s not going to bleed here, but I didn’t really push through or tear, it fell in by itself. Now you could in a case like this you might argue not even have to put in, you just over canalicular tubing, Guibor, something like that, usually I will for revision cases, at least.
CHAPTER 7
Alright and now your flap, still here, and it’s not so important for the anatomy here, but I would just trim this flap, so that it would cover this bone - cover this bone up here. That’s a great dissection there. Yeah, it's nice. Now I probably didn’t cut that the best, but you can get the sense that it’s mucosa you can lay back down here. It looks like it went too high, but again I didn't - it turns out I didn't really have to go higher, but I could go higher. Alright. If you guys look at the monitor, there’s a probe going through the common canaliculus. You got to identify that. That’s how you know how high you are. If you don’t see that then you got to go higher. Right. That looks great. Alright.